Purpose. Endogenous Cushing’s syndrome (CS), usually affecting young and otherwise healthy patients, is a good model to validate the effects of supraphysiological levels of glucocorticoids in humans. This study evaluates circulating levels of extracellular antagonists of Wnt/ß-catenin signaling pathway (sclerostin, Dickkopf1 (Dkkl), secretedfrizzled-related protein 1 (SFRP1)) along with osteoprotegerin (OPG) and soluble receptor activator of nuclear factor kappa-beta ligand (RANKL) in patients with CS as compared to healthy individuals. Materials and methods. Forty patients with clinically and biochemically evident CS and 40 sex, age and body-mass index matched healthy individuals provided fasting serum samples (8:00-10:00AM) for measurement of sclerostin, SFRP1 and Dkkl, RANKL., OPG along with bone turnover markers. Serum samples on RANKL., OPG., Dkkl, SFRP1, sclerostin were frozen and then concurrently measured by an enzyme immunoassay (ELISA) using commercially available reagents. Serum samples on osteocalcin (OC), carboxyterminal cross-linked telopeptide of type I collagen (CTx), cortisol in serum and saliva were assayed by electrochemiluminescence (ECLIA) Cobas e601 Roche. Urinary free cortisol (24hUFC) was measured by an immunochemiluminescence assay (extraction with diethyl ether) on a Vitros ECi. All participants were questioned regarding any recent low traumatic fractures. Patients with CS underwent standard spinal radiographs in anterior-posterior and lateral positions of the vertebrae Th4-L4 (Axiom Icons R200 "Siemens"). Results. Patents with CS (30 (26-40) years old with 24hUFC 2575 (1184-4228) nmol/l (Me (Q25-Q75)) had suppressed OC and normal CTx levels as compared to healthy subjects. A significant correlation, which we observed between OC and CTx (po=0.724 (p<0.001)) among the healthy volunteers, weakened to a non-significant level (po - 0.285 (p=0.083)) when analyzing patients with CS only. 24hUFC correlated with OC po = - 0.464 p=0.003, but not with CTx po= 0.245 (p=0.132) in patients with CS. Patients with CS had higher sclerostin levels versus healthy control subjects (p=0.032). Differences in sclerostin were due to the lack of lower sclerostin values rather than an increase in protein levels above the upper-limits of the healthy control individuals. Sclerostin levels higher than 662 pg/ml were four times more frequent in patients with CS as compared to healthy subjects (OR=4,19, 95% CI 1,44-12,22), p=0,006. Dkk1, SFRP1 did not differ from the control group. Patients with CS had a significantly lower level of RANKL (0.083 (0.075 0.093) pmol/L) as compared to healthy subjects (0.106 (0.089 0.131) pmol/L) p<0.001. Conversely, no difference was found between the OPG level in patients with CS (6.65 (4.92-7.66) pmol/L) and healthy individuals (5.77 (5.00-6.40) pmol/L), p=0.14. RANKL was lower (p=0.02) and OPG was higher (p=0.04) in patients with CS and low traumatic fractures (n=19) versus patients without fractures (n=21). Conclusions. Patients with CS have higher sclerostin level as compared to healthy subjects. Hypercotisolism prevents the normal physiological suppression of sclerostin rather than raising its absolute level. Of all the tested proteins (sclerostin, Dkk1, SFRP1, RANKL., OPG) only sclerostin seems to be a promising therapeutic approach to treating osteoporosis in patients with endogenous CS.

About the authors

Zh E Belaya

Author for correspondence.
k.m.n., starshiy nauchnyy sotrudnik otdeleniya neyroendokrinologii i osteopatiy

L Ya Rozhinskaya

d.m.n., professor, zav. otdeleniem neyroendokrinologii i osteopatiy

N V Dragunova

aspirant otdeleniya neyroendokrinologii i osteopatiy

A G Solodovnikov


A V Ilyin

zav. laboratoriey biokhimii i gormonal'nogo analiza

G A Melnichenko

d.m.n., professor, akademik RAMN, direktor Instituta klinicheskoy endokrinologii

I I Dedov

d.m.n., professor, akademik RAN i RAMN, direktor

L K Dzeranova

d.m.n., glavnyy nauchnyy sotrudnik otdeleniya neyroendokrinologii i osteopatiy


  1. Kanis J.A., Johansson H., Oden A., Johnell O., de Laet C., Melton L.J. III., Tenenhouse A., Reeve J., Silman A.J., Pols H.A., Eisman J.A., McCloskey E.V., Mellstrom D.: A meta-analysis of prior corticosteroid use and fracture risk. // J. Bone and Mineral Research, 2004, Vol. 19, pp. 893—899.
  2. Staa T.P., Leufkens H.G., Abenhaim L., Zhang B., Cooper C.: Use of oral corticoids and risk of fractures. // J. Bone and Mineral Research, 2000, Vol. 15, pp. 933—1000.
  3. Рожинская Л.Я., Белая Ж.Е. Стероидный остеопороз при эндогенном гиперкортицизме // в книге болезнь Иценко-Кушинга, под ред акад. Дедова И.И и член-корр Мельниченко Г.А. М, 2011. С. 282—297.
  4. Tauchmaonova L., Pivonello R., Di Somma C., Rossi R., De Martino M.C., Camera L., Klain M., Salvatore M., Lombardi G., Colao A.: Bone Demineralization and vertebral fractures in endogenous cortisol excess: role of disease etiology and gonadal status. // J. Clin Endocrinol. Metab., 2006, Vol. 91, pp. 1779—1784.
  5. Sornay-Rendu E., Munoz F., Garnero P., Duboeuf F., Delmas P.D.: Identification of osteopenic women at high risk of fracture: the OFELY study. // J. Bone Miner. Res., 2005, Vol. 20, pp. 1813—1819.
  6. Garnero P., Delmas P.D.: Contribution of bone mineral density and bone turnover markers to estimation of risk of osteoporotic fracture in postmenopausal women. // J. Musculoskel Neuron Interact, 2004, Vol. 4, pp. 50—63.
  7. Lukert B.P., Higgins J.C., Stoskopf M.M.: Serum osteocalcin is increased in patients with hyperthyroidism and decreased in patients receiving glucocorticoids. // J. Clin Endocrinol Metab, 1986, Vol. 62, pp. 1056—1058.
  8. Barahona M.J., Sucunza N., Resmini E., Fermandez-Real J.M., Ricart W., Moreno-Navarrete J.M., Puig T., Wagner A.M., Rodriguez-Espinosa J., Farrerons J., Webb S.M.: Deletorious effects of glucocorticoid replacement on bone in women after long-term remission of Cushing’s syndrome. // J. Bone Miner Res, 2009, Vol. 24, pp. 1841—1846.
  9. Sartorio A., Conti A., Ferrario S., Passini E., Re T., Ambrosi B.: Serum bone Gla protein and carboxyterminal cross-linked telopeptide of type I collagen in patients with Cushing’s syndrome. // Postgrad Med J., 1996, Vol. 72, pp. 419—422.
  10. Szappanos A., Toke J., Lippai D., Patocs A., Igaz P., Szucs N., Futo L., Glaz E., Racz K., Toth M.: Bone turnover in patients with endogenous Cushing’s syndrome before and after successful treatment. // Osteoporosis International, 2010, Vol. 21, pp. 637—645.
  11. Kristo C., Jemtland R., Ueland T., Godang K., Bollerslev J.: Restoration of the coupling process and normalization of bone mass following successful treatment of endogenous Cushing’s syndrome: a prospective long-term study. // European J. Endocrinology, 2006, Vol. 154, pp. 109—118.
  12. Kaltsas G., Makras P.: Skeletal diseases in Cushing’s syndrome: osteoporosis versus arthropathy. // Neuroendocrinology, 2010, Vol. 92 (suppl 1), pp. 60—64.
  13. Krishnan V., Bryant H.U., MacDougald O.A. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006; 116: 1202—1209.
  14. Yavropoulou M.P., Yovos J.G. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens). 2007; 6: 279-94.
  15. Westendorf J.J., Kahler R.A., Schroeder T.M.: Wnt signaling in osteoblasts and bone diseases. J. Gene, 2004, Vol. 341, pp. 19—39.
  16. Kawano Y., Kypta R.: Secreted antagonists of the Wnt signaling pathway. // J. Cell Science, 2003, Vol. 116, pp. 2627—2634.
  17. Johnson M.L., Harnish K., Nusse R., Hul W.V.: LRP5 and Wnt signaling: a union made for bone. // Journal of Bone and Mineral Research, 2004, Vol. 19, pp. 1749—1757.
  18. Hofbauer L.C., Gori F., Riggs B.L., Lacey D.L., Dunstan C.R., Spelsberg T.C., Gori F., Riggs B.L., Lacey D.L., Dunstan C.R., Spelsberg T.C., Khosla S.: Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology, 1999, Vol. 140, pp. 4382—4389.
  19. Swanson C., Lorentzon M., Conaway H.H., Lerner U.H.: Glucocorticoid regulation of osteoclast differentiation and expression of receptor activator of nuclear factor-kappaB in mouse calvarial bones. // Endocrinology, 2006, Vol. 147, pp. 3613—3622.
  20. Lekamwasam S., Adachi J.D., Agnusdei D., Bilezikian J., Boonen S., Borgstrom F., Cooper C., Diez Perez A., Eastell R., Hofbauer L.C., Kanis J.A., Langdahl B.L., Lesnyak O., Lorene R., McCloskey E., Messina O.D., Napoli N., Obermayer-Pietsch B., Ralston S.H., Sambrook P.N., Silverman S., Sosa M., Stepan J., Suppan G., Wahl D.A., Compston J.E., Joint IOF-ECTS GIO Guidelines Working Group.: A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. // Osteoporosis International, published online 21 March 2012.
  21. Nijweide P.J.M Jean H. M.M Feyen E. Cells of Bone: Proliferation, Differentiation, and Hormonal Regulation. Physiological Reviews 1986 Vol. 66, pp: 855—886.
  22. Canalis E., Mazziotti G., Giustina A., Bilezikian J.P.: Glucocorticoid-induced osteoporosis: pathophysiology and therapy. // Osteoporosis International, 2007, Vol. 18, pp. 1319—1328.
  23. Van Hogezand R.A., Hamdy N.A.: Skeletal morbidity in inflammatory bowel disease. Scand J. Gastroenterology, 2006, Vol. 243, S59—S64.
  24. Lekamwasam S., Trivedi D.P., Khaw K.T.: An association between respiratory function and bone mineral density in women from the general community: a cross sectional study. Osteoporosis Int 2002, Vol. 13, 710—715.
  25. Белая Ж.Е., Ильин А.В., Мельниченко Г.А., Рожинская Л.Я., Драгунова Н.В., Дзеранова Л.К., Огнева Н.А., Бутрова С.А., Трошина Е.А., Колесникова Г.С., Дедов И.И.: Автоматизированный электрохемилюминисцентный метод определения кортизола в слюне для диагностики эндогенного гиперкортицизма среди пациентов с ожирением. // Ж. Ожирение и метаболизм, 2011, том 27, № 2, стр. 56—63.
  26. Nieman L.K., Biller B.M.K., Finding J.W., Newell-Price J., Savage M.O., Stewart P.M., Montori V.M.: The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. Journal of Clinical Endocrinology Metabolism. 93, 1526—1540 (2008).
  27. Watts N.B., Bilezikian J.P., Camacho P.M., Greenspan S.L., Harris S.T., Hodgson S.F., Kleerekoper M., Luckey M.M., McClung M.R., Pollack R.P., Petak S.M.; AACE Osteoporosis Task Force.: American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of postmenopausal osteoporosis. // Endocr Pract. 2010 Vol. 16 Suppl 3, pp.1—37.
  28. Genant H.K., Wu C.Y., van Kujik C., Nevitt M.C.: Vertebral fracture assessment using a semiquantative technique. // J. Bone Miner Res. 1993, Vol. 8 (9), pp. 1137—1148.
  29. Afina S. Glas, Jeroen G. Lijmer, Martin H. Prins, Gouke J. Bonsel, Patrick M.M. Bossuyt. The diagnostic odds ratio: a single indicator of test performance. Journal of Clinical Epidemiology, 56 (2003), 1129—1135.
  30. Ardawi M.M., Al-Kadi H.A., Rouzi A.A., Qari M.H.: Determinants of serum sclerostin in healthy pre- and postmenopausal women. // J. Bone and Mineral Research, 2011, Vol. 26, pp. 2812—2822.
  31. Modder U.I., Hoey K.A., Amin S., McCready L.K., Achenbach S.J., Riggs B.L., Melton III L.J., Khosla S.: Relation of age, gender, and bone mass to circulating sclerostin level in women and men. // JBMR., 2011, Vol. 26, pp. 373—379.
  32. Costa A.G., Cremers S., Rubin M.R., McMahon D.J., Sliney J.J., Lazaretti-Castro M., Silverberg S.J., Bilezikian J.P.: Circulating sclerostin in disorders of parathyroid gland function. // J. Clin Endocrinol Metab. 2012, Vol. 97, pp. 1737—1744.
  33. Garcia-Martin A., Rozas-Moreno P., Reyes-Garcia R., Morales-Santana S., Garcia-Fontana B., Garcia-Salcedo JA., Murioz-Torres M.: Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. // J. Clin Endocrinol and Metab, 2012, Vol. 97, pp. 234—241.
  34. Gennari L., Merlotti D., Valenti R., Ceccarelli E., Ruvio M., Pietrini M.G., Capodarca C., Beatrice Franci M., Campagna M.S., Calabro A., Cataldo D., Stolakis K., Dotta F., Nuti R.: Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. // J. Clinical Endocrinology and Metabolism, 2012, Vol. 97, pp. 1737—1744.
  35. Gaudio A., Pennisi P., Bratengeier C., Torrisi V., Lindner B., Mangiafico R.A., Pulvirenti I., Hawa G., Tringali G., Fiore C.E.: Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. // J Clin Endocrinol and Metab, 2010, Vol. 95, pp. 2248—2253.
  36. Marenzana M., Greenslade K., Eddleston A., Okoye R., Marshall D., Moore A., Pobinson M.K.: Sclerostin antibody treatment enchances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum, 2011, Vol. 63, pp. 2385—2395.
  37. van Bezooijen R.L., Roelen B.A.J., Visser A., et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med., 2004, Vol. 199, pp. 805—814.
  38. Poole K.E.S., van Bezooijen R.L., Loveridge N., et al.: Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. // FASEB J. 2005, Vol. 19, pp. 1842—1844.
  39. van Bezooijen R.L., ten Dijke P., Papapoulos S.E., Lowil CW.: SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. // Cytokine Growth factor Rev. 2005, Vol. 16, pp. 319—327.
  40. Wang F.-S., Lin C.-L., Chen Y.-J., Wang C.-J., Yang K.D., Huang Y.-T., Sun Y.-C., Huang H.-C.: Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. // J. Endocrinology, 2005, Vol. 146, pp. 2415—2423.
  41. Ohnaka K., Taniguchi H., Kawate H., Nawata H., Takayanagi R.: Glucocorticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. // Biochem Biophys Res Commun, 2004.
  42. Wang F.-S., Ko J.-Y., Yeh D.-W., Ke H.-C., Wu H.-L.: Modulation of dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation and bone mass loss. // Endocrinology, 2008, Vol. 149, pp. 1793—1801.
  43. Lierop A.H.J.M., Hamdy N.A.T., Papapoulos S.E.: Glucocorticoids are not always deleterious for bone. // J. Bone and Mineral Research, 2010, Vol. 25, pp. 2796—2800.
  44. Wergedal J.E., Veskovic K., Hellan M., Nyght C., Balemans W., Libanati C., Vanhoenacker F.M., Tan J., Baylink D.J., Van Hul W.: Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal. // J. Clin Endocrinol Metab, 2003, Vol. 88, pp. 5778—5783.
  45. Loots G.G., Kneissel M., Keller H., Baptist M., Chang J., Collette N.M., Ovcharenko D., Plajzer-Frick I., Rubin E.M.: Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. // Genome Res, 2005, Vol. 15, pp. 928—935.
  46. Hofbauer L.C., Schopet M.: Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular disease. // JAMA., 2004, Vol. 292, pp. 490—495.
  47. Bucay N., Sarosi I., Dunstan C.R., Morony S., Tarpley J., Capparelli C., Scully S., Tan H.L., Lacey D.L., Boyle W.J., Simonet W.S.: Osteoprotegerin-dificient mice develop early onset osteoporosis and arterial calcification. // Genes and Development, 1998, Vol. 12, pp. 1260—1268.
  48. Dovio A., Allasino B., Palmas E., Ventura M., Pia A., Saba L., Aroasio E., Terzolo M., Angeli A.: Increased Osteoprotegerin levels in Cushing’s syndrome are associated with an adverse cardiovascular risk profile. // Journal Clinical Endocrinology and Metabolism, 2007, Vol. 92, pp. 1803—1808.
  49. Camozzi V., Sanguin F., Albigier N., Scaroni C., Mantero F., Zaninotto M., Frigo A., Piccolo M., Luisetto G.: Persistent increase of osteoprotegerin levels after cortisol normalization in patients with Cushing’s syndrome. // European J. Endocrinology, 2010, Vol. 162, pp. 85—90.
  50. Kong Y.Y., Yoshida H., Sarosi I., Tan H.L., Timms E., Capparelli C., Morony S., Olivera-dos-Santos A.J., Van G., Itie A., Khoo W., Wakeham A., Dunstan C.R., Lacey D.L., Mak T.W., Boyle W.J., Penninger J.M.: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, Vol. 397, pp. 315—323.
  51. Anderson D.M., Maraskovsky E., Billingsley W.L., Dougall W.C., Tometsko M.E., Roux E.R., Teepe M.C., DuBose R.F., Cosman D., Galibert L.: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. // Nature, 1997, Vol. 390, pp. 175—179.
  52. Bachmann M.F., Wong B.R., Josien R., Steinman R.M., Oxenius A., Choi Y.: TRANCE., a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. // J. Exp. Med, 1999, Vol. 189, pp. 1025—1031.
  53. Pivonello R., Melnichenko G., Zacharieva S., Gu F., Oscar B., Shah N.S., Gaillard R., Colao A.: Mission study: an international observational study on the mortality in Cushing’s syndrome. // Endocrine Abstracts, 2011, Vol. 26, P. 32.



Abstract - 832

PDF (Russian) - 599




Copyright (c) 2012 Belaya Z.E., Rozhinskaya L.Y., Dragunova N.V., Solodovnikov A.G., Ilyin A.V., Melnichenko G.A., Dedov I.I., Dzeranova L.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies